Improving Multifrontal Methods by Means of Block Low-Rank Representations
نویسندگان
چکیده
منابع مشابه
Improving Multifrontal Methods by Means of Block Low-Rank Representations
Matrices coming from elliptic Partial Differential Equations (PDEs) have been shown to have a low-rank property: well defined off-diagonal blocks of their Schur complements can be approximated by low-rank products. Given a suitable ordering of the matrix which gives to the blocks a geometrical meaning, such approximations can be computed using an SVD or a rank-revealing QR factorization. The re...
متن کاملOn the Complexity of the Block Low-rank Multifrontal
Matrices coming from elliptic Partial Differential Equations have been shown to have a low4 rank property: well defined off-diagonal blocks of their Schur complements can be approximated by low-rank 5 products and this property can be efficiently exploited in multifrontal solvers to provide a substantial reduction 6 of their complexity. Among the possible low-rank formats, the Block Low-Rank fo...
متن کاملOn the Complexity of the Block Low-Rank Multifrontal Factorization
Matrices coming from elliptic Partial Differential Equations have been shown to have a low-rank property: well defined off-diagonal blocks of their Schur complements can be approximated by low-rank products and this property can be efficiently exploited in multifrontal solvers to provide a substantial reduction of their complexity. Among the possible low-rank formats, the Block Low-Rank format ...
متن کاملBlock Low-Rank (BLR) approximations to improve multifrontal sparse solvers
Matrices coming from elliptic Partial Differential Equations (PDEs) have been shown to have a lowrank property: well defined off-diagonal blocks of their Schur complements can be approximated by low-rank products. In the multifrontal context, this can be exploited within the fronts in order to obtain a substantial reduction of the memory requirement and an efficient way to perform many of the b...
متن کاملAn algebraic multifrontal preconditioner that exploits the low-rank property
We present an algebraic structured preconditioner for the iterative solution of large sparse linear systems. The preconditioner is based on a multifrontal variant of sparse LU factorization used with nested dissection ordering. Multifrontal factorization amounts to a partial factorization of a sequence of logically dense frontal matrices, and the preconditioner is obtained if structured factori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2015
ISSN: 1064-8275,1095-7197
DOI: 10.1137/120903476